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 Along with the trend emphasizing ID learning, ID assessments to measure students’ ID understanding have been 
developed by several scholars. The interdisciplinary science assessment for carbon cycling (ISACC) was developed 
to assess ID understanding among high school and college students in integrating knowledge from different 
science disciplines to explain a scientific phenomenon, global carbon cycling. The ISACC’s construct validity was 
checked using traditional item response theory (IRT) models in 2021. The current study was motivated by the 
desire to reveal the difference in IRT analysis results of the ISACC using a Bayesian approach in comparison with 
the results using the traditional approach. The Bayesian approach has several strengths over the traditional IRT. 
The results of the study imply the need for additional research for the development and validation of 
interdisciplinary science assessments through strong psychometric properties. 

Keywords: interdisciplinary understanding, carbon cycling, assessment, item response theory, Bayesian 
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INTRODUCTION 

Natural phenomena and related social scientific issues are 
intrinsically interdisciplinary (ID). A variety of academic 
disciplines in natural science are fundamental for students to 
explain a phenomenon or related issues along with their 
reasoning for different phenomena. The current science 
education system mainly focuses on a discipline-based 
curriculum, but since the 1980s, efforts have begun to find the 
balance between specialization and integration. During the 
1990s, scholars paid close attention to designing and 
managing interdisciplinary curricular and associated research 
projects and reporting the practical and theoretical 
consequences of relationships between particular disciplines 
(Klein, 1990). In this trend, national documents and standards 
of many countries for science education (e.g., the next 
generation science standards and framework) have 
demonstrated the value and essentiality of ID approaches to 
learning and led to substantial support for ID learning.  

The definitions and characteristics of “interdisciplinary 
understanding” have been shown in the literature. Spelt et al. 
(2009) indicated the importance of individual disciplines 
which can be integrated for ID understanding. Klein (1990) 
highlighted that ID understanding is required as an extra step 
of linking the identified ID knowledge, which is a different 
aspect from multidisciplinary thinking that does not 

necessitate the integration of knowledge. Boix Mansilla and 
Duraisingh (2007) described ID understanding, as follows: 

“The capacity to integrate knowledge and modes of 
thinking in two or more disciplines or established areas 
of expertise to produce a cognitive advancement–such 
as explaining a phenomenon, solving a problem, or 
creating a product–in ways that would have been 
impossible or unlikely through single disciplinary 
means” (p. 219). 

Reiska et al. (2018) operationalized ID understanding as  

“students’ overall ability to connect knowledge from 
different fields and their ability to integrate 
disciplines” (p. 2), 

which is conceptualized based on the definitions from Boix 
Mansilla and Duraisingh (2007) and Klein (1990).  

During the past decades, even though there has been a 
growing emphasis on ID learning and teaching in both 
secondary- and college-level education, assessments to 
measure students’ ID understanding have not actively been 
developed. The ID assessment could provide a powerful tool to 
discover and create links between relevant science subjects but 
only six ID assessments in the secondary and college level 
(Reiska et al., 2018; Schaal et al., 2010; Shen et al., 2014; Tripp 
et al., 2020; Yang et al., 2017; You et al., 2021) were located by 
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a recent comprehensive literature search. You et al. (2021) 
developed the interdisciplinary science assessment for carbon 
cycling (ISACC) to assess the performance of high school and 
college students in integrating knowledge from different 
science disciplines to explain a scientific phenomenon, global 
carbon cycling. The ISACC comprises 19 items, including 11 
multiple-choice (MC) items and eight constructed response 
(CR) items, covering nine core concepts of carbon cycling. The 
ISACC was administered to 454 students in grades 9-16. The 
students’ data were analyzed to examine construct validity 
using two item response theory (IRT) models: a two-parameter 
logistic model (2PLM) for MC questions and a generalized 
partial credit model (GPCM) for CR questions. The authors 
validated the assessment using the frequentist approach. The 
current study was motivated by the desire to elucidate the 
difference in IRT analysis results of the ISACC using a Bayesian 
approach to compare the results using the traditional 
approach. However, the Bayesian approach is scarcely used in 
science education. The goal of this study is to examine if 
Bayesian IRT models and traditional IRT methods produce 
similar parameters on MC and CR items. The guiding research 
question is, as follows:  

RQ: How do Bayesian IRT models compare and contrast to 
traditional IRT models when the ISACC items are analyzed? Do 
Bayesian methods and traditional IRT methods produce 
similar parameter estimates on the items? 

Interdisciplinary Science Assessments and Their Data 
Analysis 

Only six ID assessments were identified by a recent, 
comprehensive literature search using seven databases, 
including ERIC, Education Source, PsycINFO, Academic 
Search Complete, Education Research Complete (from 
EBSCO), Web of Science, ProQuest (for dissertations and 
theses), and Google Scholar. Search words used included 
“(Science or STEM) and (interdisciplinary or multidisciplinary 
or cross-disciplinary or integrated) and assessment.” Reiska et 
al. (2018) examined the change of high school students’ ID 
understanding throughout two years of schooling and 
explored differences in ID understanding among students from 
different schools. The authors used a concept mapping method 
to discover ID understanding and employed an automatic 
analysis applying a numeric interdisciplinary quality index 
(IQI) to assess multiple concept maps. Schaal et al. (2010) also 
used concept maps to assess ninth graders’ ID knowledge 
regarding mammalian hibernation strategies both pre-and 
post-test. The authors showed improvement in the students’ 
interconnected science concepts with biological and physical 
perspectives in a post-test compared to a pre-test, which 
implies some potential of promoting learners’ ID abilities 
through ID instruction. Shen et al. (2014) developed an 
interdisciplinary assessment to assess college students’ ID of 
osmosis, which involves knowledge from multiple science 
disciplines. The ID assessment included 15 disciplinary items 
and 25 interdisciplinary ones. Students’ responses were 
analyzed using the Rasch model (Rasch, 1960, 1980) and Rasch 
partial credit model (PCM; Masters, 1982). Shen et al. (2014) 
reported some good psychometric properties, but to have a 
more reliable and valid tool, other aspects of construct validity 
are needed, such as infit, dimensionality (for Rasch model’s 

assumption), and differential item functioning to provide 
information on whether items functioned differently across 
genders and races. Moreover, as the assessment was 
implemented as a homework assignment, this may undermine 
the construct validity. Tripp et al. (2020) developed essay 
prompts in which students ponder real-world issues that 
inherently require ID understanding and examined how a 
previously developed ID rubric captures students’ ID 
understanding in the writing activities for the purpose of 
validation. The results revealed that the writing assessment 
did not fully capture students’ ID understanding, but instead, 
their perception regarding interdisciplinary science supported 
the robustness of the interdisciplinary science framework 
(IDSF) developed previously by the authors. They argued that 
the IDSF could be a better model to guide instructors on factors 
to consider when developing ID curricula and assessments. 
Yang et al. (2017) designed an interdisciplinary assessment by 
selecting 20 items targeting crosscutting concepts (CCs). The 
item format of the selected items was MC or two-tiered MC. A 
total of 801 students from grades 4 to 8 in five urban schools 
participated in the assessment. The evidence of reliability and 
validity has been established using Rasch measurement. The 
item reliability was 0.98, and person reliability was slightly 
over 0.60, which does not reach the acceptable value of 0.70. 
Furthermore, this study reported low person separation of 1.15 
(acceptable value is 2), which reflects low power of the items 
in distinguishing between high and low performers. Even 
though the assessment had a good fit based on infit and outfit 
statistics of the items, Yang et al. (2017) reported the 
misalignment between the average item difficulty and the 
mean of student ability. There were major gaps at the top of 
the Wright map, where few students matched the high-
difficulty items and at the bottom where no items matched 
low-ability students. This result indicated the need of items 
with different difficulty levels for a further revised version of 
the assessment that could have more desirable construct 
validity. Last You et al. (2021) developed an assessment to 
measure students’ interdisciplinary understanding of global 
carbon cycling in the construct-modeling framework (Wilson, 
2005). The ISACC was designed for high school and college 
students. The assessment requires testing students’ 
integration knowledge of physics, chemistry, biology, and 
earth science. To measure a broad level of disciplinary and ID 
understanding, the test included both item types: disciplinary 
and ID items. The disciplinary items require knowledge of only 
a single science discipline, whereas the ID items require 
knowledge of more than two science disciplines. Table 1 shows 
the examples of D and ID items. The details of the ISACC are 
described in the instrument section in Table 1.  

Frequentist Versus Bayesian Methods 

Recognizing the difference between a Bayesian approach 
and a frequentist approach is essential for arguing why one 
procedure might be preferred over the other. Bayesian 
methods differ from the frequentist approach in three main 
ways: conceptions of probability, parameters (random vs. 
fixed), and use of prior information. Frequentist statistics 
usually allow researchers to perform a hypothesis test and 
formulate a null and an alternative hypothesis. The null 
hypothesis assumes no difference between specified 
populations. A p-value is the probability of obtaining results 
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at least as extreme as the one in the data, assuming that the 
null hypothesis is true. In frequentist approaches, parameters 
are treated as fixed, reflecting fixed features of the population, 
and the data are treated as a random, varying from sample to 
sample. The maximum likelihood (ML) estimation widely used 
in the frequentist methods yields the highest probability of the 
parameter values of the data observed.  

Bayesian statistical methods bring a different philosophy 
from traditional statistical inference. Bayes’s theorem is a 
statement of conditional probability. The conditional 
probability is expressed as the degree of uncertainty by 
treating parameters as random rather than fixed (Kruschke, 
2015). In other words, Bayesian inference uses probabilities 
that are conditional on data to express beliefs about unknown 
quantities. Bayesian statistics start with a prior distribution. 
The prior distribution is the “initial” expected distribution of 
the parameter. The use of prior distributions represents a 
powerful mechanism for controlling confounding. If prior 
information is incorporated, model parameters can be updated 
in Bayesian inference. Once a prior distribution is chosen, the 
likelihood of the data being given a specific value of a 
parameter is computed and multiplied by the prior. This yields 
the probability of the parameter given the data or the posterior 
distribution. Many researchers agree that it is appealing to 
consider data and information from previous studies in 
analyzing current data. Furthermore, another advantage to the 
Bayesian approach is that the posterior can be continually 
updated in multiple steps, using the previous posterior 
distribution as the prior in a further refined procedure. Prior 
distributions can be noninformative or informative. An 
informative prior distribution leads to shifts of parameter 
estimates toward the mean of the prior distribution. 

In the Bayesian approach, the likelihood of the data being 
given a specific value of a parameter is combined with prior 
information to create a posterior distribution. The posterior 
distribution is proportional to the product of the prior and the 
likelihood function, with the likelihood of receiving more 
weight as the sample size increases. It is assumed that the 
estimation incorporating accurate prior information regarding 
parameters could outperform the ML estimation. Gelman and 
Rubin (1995) indicated that the posterior distribution is 
located at a point of compromise between the prior 
distribution and the data, which provide a closed true 
representation. The posterior distribution is obtained via 
simulation using Markov chain Monte Carlo (MCMC) methods 
(Kruschke, 2015). A wealth of Monte Carlo simulation studies 
and recent Bayesian methodology studies noted the potential 
benefits of Bayesian methods over ML methods when small 
samples are considered (e.g., McNeish & Stapleton, 2016). 
Previous research in IRT revealed the benefits of Bayesian 
procedures, arguing that Bayesian estimation typically 
generates item parameters in a more accurate and consistent 
way than maximum likelihood procedures (e.g., Gao & Chen, 
2005; Hsieh et al., 2010; Lord, 1986). 

METHOD 

Instrument  

The ISACC was the first assessment developed to measure 
the performance of high school and college students in 
integrating knowledge of a carbon cycling phenomenon. 
Several previous studies have validated the ISACC through 
qualitative and quantitative processes (You et al., 2018, 2021, 

Table 1. ISACC items and the discipline descriptions 
Items Discipline(s) Items Discipline(s) 
I1MC Earth science I11MC Biology, earth science, physics 
D2CR Biology I12CR Earth science, physics 
I3MC Biology, earth science I13MC Biology, earth science 
D4CR Biology I14CR Biology, chemistry, earth science 
D5MC Biology I15CR Biology, earth science 
D6MC Biology D16MC Earth science 
I7CR Biology, chemistry D17MC Chemistry 
I8CR Biology, chemistry, earth science I18MC Biology, physics 
I9MC Earth science, physics I19CR Biology, earth science 
I10MC Biology, earth science   
Note. D: Single disciplinary; I: Interdisciplinary; MC: Multiple choice; CR: Constructed response;  
I3MC: The most popular timber product grown in the United States today is pinus taeda known as loblolly pine. The pine trees’ average height 
and circumference are reported to have been increasing since the 1960s. The level of CO2 in the atmosphere has also been increasing rapidly since 
1950. It has been proposed that the increased burning of fossil fuels might explain the increased growth for this species. Among the following 
statements, which one do you agree with regarding this proposed explanation? 

A. This explanation would be difficult to test because of all the other factors, such as temperature and light level, which might have 
affected the growth of the trees. 

B. This explanation makes sense because an increase in atmospheric CO2, one of the inputs in photosynthesis, will always lead to 
increased glucose production and more plant growth. 

C. This explanation cannot be right because increased CO2 causes global warming, which is detrimental to plant growth. 
D. This explanation cannot be right because the burning of fossil fuels releases sulfur dioxide (SO2), which causes acid rain and kills 

plants. 
E. None of the above 

I15CR: The geological carbon cycle is complicated, with many different pieces playing their roles. Usually, a change in one part of the cycle 
causes compensating changes in other parts, but sometimes the system takes a long time to get back into balance. For example, it takes a long 
time for the oceans to increase their uptake of carbon dioxide, so they might not be able to compensate for CO2 increase in the air, resulting in 
an imbalance. How could deforestation lead to an imbalance in carbon dioxide levels? 
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2022). The ISACC assessment items were finalized by the 
selection of the core concepts of carbon cycling and experts’ 
review for content validity and pilot testing. The final ISACC 
comprises 11 MC items and eight CR items covering nine core 
concepts of carbon cycling. For CR items, scoring rubrics were 
developed to grade. Two IRT models, a 2PLM and a GPCM, 
were used to validate the ISACC items. In the results, all items 
were unidimensional, having one carbon cycling construct and 
the local independence assumption were met. All items except 
for D5MC showed a good fit to the models and satisfactory 
psychometric properties.  

The item difficulties ranged from -2.63 to 1.48 logits across 
the MC items. I18MC was the most difficult item, while D5MC 
was the easiest item. Items I1MC, I3MC, D5MC, D6MC, I13MC, 
D16MC, and D17MC with negative item difficulties were 
relatively easy items, and items D2CR, D4CR, I7CR, I9MC, 
I10MC, I11MC, I12MC, and I14CR had relatively medium 
difficulty, around 0.5 in the middle of the ability scale. Items 
I8CR, I15CR, I18MC, and I19CR were hard items. Even at the 
highest ability level shown (+3), the probability of a correct 
response was only 0.8 for the difficult items (Table 2 and 
Table 3). 

Discrimination parameters describe how well an item 
differentiates between people’s abilities below the item 
location and those having abilities above the item location. 
Discrimination ranged from 0.32 (I14CR) to 1.15 (D5MC). 
I14CR has low discrimination, and the probability of getting 
I14CR correct for low performers is almost the same as it is in 
high performers. D5MC has a very low difficulty level (b=-2.57) 
and does not provide useful information because 92.7% of the 
participants were correct on the item. However, D5MC has the 
highest discrimination (a=1.08), where the probability of a 
correct answer changes greatly as a person’s ability increases. 
Item parameters in the GPCM are calculated from the value of 
the slope parameter and the spread of the thresholds 

(Embretson & Reise, 2013), such that higher values for 
information have steeper slopes, and the between-category 
threshold parameters for an item are distributed evenly. D2CR 
shows the highest value for information across all items, which 
implies that the item estimates discrimination more 
accurately than other items (Table 3). 

Participants and Data 

This current study used the same data set as the ISACC. 
Four hundred fifty-four high school and college students 
participated, and all students’ test responses were collected by 
a web-based assessment system. Of 454 students, 41.9% were 
male and 58.1% were female. The racial diversity of the 
students was: White (39.0%), Asian (28.9%), Hispanic or Latino 
(23.3%), African American (5.1%), Native Hawaiian or other 
Pacific Islander (0.4%), and other (3.3%).  

Models: Two-Parameter Logistic Model and Generalized 
Partial Credit Model 

The selection of IRT models can be determined based on 
the number of scored responses and sample size. In this study, 
the responses are a combination of dichotomous items and 
polytomous items, and the sample size is 454 individuals. 
According to recommendations for the reasonable models for 
parameter estimation (Embretson & Reise, 2013), this study 
used a mixed-format IRT model: a two-parameter logistic 
model (2PLM) (Birnbaum, 1968) and a generalized partial 
credit model (GPCM) (Muraki, 1992). The 2PLM is used for 
dichotomous score items, and the GPCM is used for CR items 
with two or more score categories. The two models predict the 
probability of a correct response to an item based on ability 
and two item parameters, difficulty and discrimination. The 
item difficulty parameter (b) describes how difficult the item 
is, whereas the item discrimination parameter (a) determines 
how well an item identifies examinees with different levels of 

Table 2. 2PLM item parameters estimates, logit: a +c or a(-b) 
Item Discrimination (a) Difficulty (b) 
I1MC 0.55 -0.73 
I3MC 0.46 -0.76 
D5MC 1.08 -2.74 
D6MC 0.59 -1.00 
I9MC 0.65 0.31 
I10MC 0.93 0.99 
I11MC 0.74 0.86 
I13MC 0.91 -0.40 
D16MC 0.80 -0.46 
D17MC 0.90 -0.40 
I18MC 0.50 1.53 

 

Table 3. GPC model item parameter estimates, logit: a[k(θ-b)+Σdk] 
Item Discrimination (a) Location parameter (b) d1 d2 d3 d4 d5 d6 d7 d8 d9 
D2CR 0.63 0.67 0 0.81 0.44 0.15 0.14 0.81 0.72 - - 
D4CR 0.86 0.14 0 1.85 1.79 1.15 0.34 1.86 2.58 - - 
I7CR 0.36 0.26 0 5.26 5.58 0.20 1.90 0.76 1.66 2.69 2.28 
I8CR 0.41 1.74 0 0.16 1.89 0.90 1.23 0.04 0.19 3.41 0.24 
I12CR 0.34 0.85 0 4.35 3.91 1.63 6.71 2.03 2.27 0.43 4.83 
I14CR 0.30 0.77 0 1.59 2.54 0.37 1.48 2.36 7.95 1.14 3.92 
I15CR 0.53 1.13 0 2.92 7.23 0.64 1.39 8.77 2.25 1.24 1.06 
I19CR 0.35 1.47 0 3.35 2.52 0.58 2.00 2.03 1.16 0.24 0.52 
Note. a: Slope parameter; b: Item location characterizing overall difficulty; d: Threshold parameters 
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the latent trait (Embretson & Reise, 2013). Difficult items have 
large, positive theta values, whereas easy items have large, 
negative theta values (Reise & Waller, 2002). The theoretical 
range of the discrimination values is –∞ to +∞; however, items 
with negative discrimination values are considered 
problematic. The negative values indicate that examinees with 
a high level of ability are less likely to answer items correctly.  

The item response function of the 2-PLM is defined as  

Pi (θ)= exp⁡[𝑎𝑖(𝜃−𝑏𝑖)]

1+exp⁡[𝑎𝑖(𝜃−𝑏𝑖)]
, 

where ai is the discrimination parameter for item i, bi is the 
difficulty, and θ is the ability of a person. 

Under the GPCM, the probability that responds in category 
x for item i with mi+1 categories is expressed as  

Pix (θ) = exp⁡[∑ 𝑎𝑖(𝜃−𝑏𝑖𝑘)
𝑥
𝑘=0

∑ exp⁡[∑ 𝑎𝑖(𝜃−𝑏𝑖𝑘)
𝑥
𝑘=0

𝑚𝑖
ℎ=0 ]

, 

where ai is the discrimination parameter for item I, and bik is 
the step difficulty parameter.  

Data Analysis 

The current study used Stan software for estimation of the 
model parameters under a Bayesian approach. Stan uses the 
no-U-turn sampler (NUTS) algorithm, an extension of the 
Hamiltonian Monte Carlo (HMC) method (Hoffman & Gelman, 
2014), which is faster than other algorithms such as the Gipps 
sampler and the Metropolis algorithm. Also, Stan has efficient 
and powerful posterior parameters (Nishio et al., 2020). We 
will use rstan, an R package that interfaces with Stan in the R 
computing environment. Basically, a Stan program comprises 
three basic building blocks: data, parameter, and model blocks.  

In the data block of Stan, latent ability and item parameters 
(i.e., difficulty, discrimination) were included. 
Hyperparameters in the priors for the two models were 
specified in the data block. A normal distribution with an 
unknown mean (mu_beta_di) and unknown standard deviation 
(sigma_beta_di) was specified as a prior for the item difficulty 
of the MC items and with an unknown mean (mu_beta_pi) and 
standard deviation (sigma_beta_pi). The priors for the 
discrimination parameter for both MC and CR items were 
specified with a lognormal distribution of including a mean of 
zero and unknown standard deviation (alpha_di and alpha_pi). 
For GPCM models, the number of categories was defined as an 
integer in this data block. The elements in the response matrix 
range from 0 to the number of categories.  

The next component, parameter block, includes model 
parameters and their hyperparameters, such as latent person 
ability and item parameters. For example, for the 2PL code, 
alpha_di represents discrimination of MC items and beta_di is 
the difficulty of individual MC items. Unknown standard 
deviations (sigma_beta & sigma_alpha) and the unknown 
mean of item difficult (mu_beta) are hyperparameters. 

In the model block, priors and models are specified. The 
existing parameters based on the knowledge of likelihood 
could leverage at least some aspects of building a prior rather 
than building a completely subjective prior distribution with 
no knowledge of the likelihood. For Bayesian analysis, the 
priors have been inferred based on the parameter results in a 
previously published ISACC paper (You et al., 2021). We placed 
a normal distribution prior (0, 1) on theta. The hyperprior for 

the unknown mean (mu_beta) is specified with normal 
distribution having a mean of 0 and a standard deviation of 5. 
Another hyperprior for unknown standard deviation 
(sigma_beta) is specified with a Cauchy distribution with (0, 5). 
A lognormal distribution with a mean of zero and unknown 
standard deviation (sigma_alpha) for the discrimination 
parameter is specified. If a prior is not specified, a uniform 
prior will be automatically applied by Stan.  

The number of chains in the MCMC method was four, and 
the number of iterations was 500. In the Stan program, 
posterior distributions of parameters of interest are generated 
where point estimates such as mean and median, standard 
deviations, and 95% credible intervals are included. Codes are 
available in Appendix A. 

RESULTS 

In this study, results of ISACC study previously reported 
were evaluated using a Bayesian IRT. In Bayesian approach, 
prior distributions of item parameter and their likelihood from 
current data are combined into posterior distributions.  

Model Convergence  

The model convergence was investigated using the 
Gelman-Rubin convergence diagnostic statistics (Gelman & 
Rubin, 1992) of Rhat. Additionally, the effective sample size 
(ESS)–an estimate of the number of independent samples from 
the HMC posterior distribution–can be used to evaluate 
convergence (Gelman et al., 2015). A larger ESS implies a lower 
possibility of autocorrelation. The Rhat values of each 
parameter that are close to 1 indicate a high chance that the 
multiple chains have converged to the same distribution. The 
ESSs ranged from 143 to 1,950. The study validated that 500 
iterations were sufficient for reaching a convergence. Figure 1 
shows trace plots for selected parameters. The x-axis of the 
graphs displays the variability in sampling estimates of the 
standard error, and the y-axis of each graph represents the 
value of the item parameters obtained for each sampling chain. 
Based on the results above, it is assumed that the MCMC 
algorithm appropriately estimated parameters for the 
proposed models. 

Parameter Estimates 

Item parameter results make it possible to validate the 
individual items to improve the assessment tool. Items 
analyzed with Bayesian methods yielded similar item difficulty 
and discrimination parameters to traditional IRT models. The 
models provide two parameters, the item difficulty and 
discrimination. Table 4 shows the parameters computed with 
Bayesian approaches. The mean of item discrimination ranged 
from 0.31 to 1.13, which is close to the item discrimination 
obtained from the traditional IRT approach (0.30 to 1.08). The 
mean of MC item difficulty was between -2.71 and 1.57. This 
result showed similarity with the item difficulty range from the 
conventional approach (-2.63 to 1.48 logits). As 95% credible 
intervals did not include 0, these estimation results for item 
discrimination and difficulty show that all items except for one 
(I9MC) were significantly valuable for measuring students’ 
interdisciplinary understanding of global carbon cycling.  



6 / 14 You / Interdisciplinary Journal of Environmental and Science Education, 18(4), e2297 

 

 
Figure 1. Trace plots for the selected parameters 
 

Table 4. Parameter estimates with Bayesian approach 
Item parameter Item Mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat 
alpha_di[1] D1MC 0.50 0.01 0.13 0.23 0.43 0.51 0.58 0.74 234 1.01 
alpha_di[2] I3MC 0.41 0.00 0.12 0.18 0.34 0.41 0.49 0.65 730 1.00 
alpha_di[3] D5MC 1.13 0.01 0.20 0.76 0.99 1.12 1.27 1.55 956 1.00 
alpha_di[4] D6MC 0.55 0.00 0.12 0.33  0.47 0.55 0.63 0.80 711 1.00 
alpha_di[5] I9MC 0.61 0.00 0.13 0.36 0.52 0.61 0.69 0.88 823 1.00 
alpha_di[6] I10MC 0.91 0.01 0.15 0.64 0.81 0.91 1.01 1.21 867 1.00 
alpha_di[7] 11MC 0.70 0.00 0.14 0.45 0.61 0.70 0.79 0.98 881 1.00 
alpha_di[8] 13MC 0.88 0.00 0.14 0.63 0.78 0.88 0.96 1.17 1113 1.00 
alpha_di[9] 16MC 0.76 0.00 0.13 0.51 0.67 0.76 0.85 1.01 874 1.00 
alpha_di[10] 17MC 0.87 0.00 0.13 0.62 0.78 0.87 0.96 1.15 710 1.00 
alpha_di[11] I18MC 0.50 0.00 0.11 0.30 0.43 0.50 0.58 0.73 864 1.00 
alpha_pi[1] D2CR 0.59 0.00 0.07 0.46 0.54 0.59 0.64 0.75 511 1.01 
alpha_pi[2] D4CR 0.81 0.00 0.10 0.64 0.75 0.81 0.87 1.02 563 1.00 
alpha_pi[3] I7CR 0.36 0.00 0.04 0.29 0.34 0.36 0.39 0.45 483 1.00 
alpha_pi[4] I8CR 0.39 0.00 0.05 0.30 0.35 0.38 0.42 0.49 653 1.00 
alpha_pi[5] I12CR 0.35 0.00 0.04 0.28 0.33 0.35 0.38 0.43 591 1.00 
alpha_pi[6] I14CR 0.31 0.00 0.04 0.24 0.28 0.31 0.33 0.39 529 1.00 
alpha_pi[7] I15CR 0.57 0.00 0.06 0.46 0.53 0.57 0.61 0.69 601 1.00 
alpha_pi[8] I19CR 0.34 0.00 0.04 0.26 0.31 0.33 0.37 0.43 515 1.00 
beta_di [1] D1MC -0.86 0.04 0.43 -1.88 -0.97 -0.78 -0.62 -0.36 143 1.02 
beta_di [2] I3MC -0.89 0.02 0.39 -1.88 -1.06 -0.83 -0.64 -0.30 476 1.00 
beta_di [3] D5MC -2.71 0.02 0.40 -3.67 -2.92 -2.67 -2.43 -2.11 653 1.00 
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Table 4 (continued). Parameter estimates with Bayesian approach 
Item parameter Item Mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat 
beta_di [4] D6MC -1.10 0.01 0.32 -1.81 -1.26 -1.06 -0.88 -0.63 540 1.00 
beta_di [5] I9MC 0.32 0.01 0.18 -0.01 0.20 0.32 0.43 0.73 1094 1.00 
beta_di [6] I10MC 1.02 0.01 0.17 0.73 0.90 1.00 1.13 1.39 734 1.00 
beta_di [7] 11MC 0.90 0.01 0.22 0.55 0.75 0.87 1.02 1.43 533 1.00 
beta_di [8] 13MC -0.42 0.00 0.14 -0.70 -0.50 -0.40 -0.32 -0.16 755 1.00 
beta_di [9] 16MC -0.49 0.01 0.17 -0.85 -0.58 -0.48 -0.38 -0.18 770 1.00 
beta_di [10] 17MC -0.42 0.01 0.14 -0.74 -0.50 -0.41 -0.33 -0.17 607 1.00 
beta_di [11] I18MC 1.57 0.01 0.38 0.97 1.29 1.53 1.77 2.49 685 1.00 
beta_pi [1] D2CR -0.07 0.01 0.25 -0.54 -0.24 -0.08 0.09 0.44 930 1.00 
beta_pi [2] D2CR 0.26 0.01 0.28 -0.27 0.08 0.25 0.44 0.86 1129 1.00 
beta_pi [3] D2CR 0.55 0.01 0.32 -0.04 0.34 0.54 0.76 1.23 809 1.00 
beta_pi [4] D2CR 0.52 0.01 0.32 -0.17 0.32 0.54 0.73 1.12 1113 1.00 
beta_pi [5] D2CR 1.53 0.01 0.38 0.77 1.28 1.51 1.77 2.31 888 1.00 
beta_pi [6] D2CR 1.37 0.02 0.44 0.47 1.10 1.37 1.66 2.22 846 1.00 
beta_pi [7] D4CR -1.69 0.01 0.35 -2.34 -1.92 -1.70 -1.46 -1.02 1895 1.00 
beta_pi [8] D4CR -1.70 0.01 0.29 -2.31 -1.88 -1.68 -1.49 -1.15 997 1.00 
beta_pi [9] D4CR -1.06 0.01 0.21 -1.50 -1.20 -1.05 -0.92 -0.68 873 1.00 
beta_pi [10] D4CR 0.49 0.00 0.17 0.17 0.37 0.49 0.60 0.81 1138 1.00 
beta_pi [11] D4CR 2.10 0.01 0.28 1.56 1.90 2.10 2.28 2.67 919 1.00 
beta_pi [12] D4CR 2.79 0.01 0.47 1.95 2.45 2.78 3.08 3.79 1177 1.00 
beta_pi [13] I7CR 4.66 0.03 0.95 3.00 3.99 4.59 5.33 6.59 1043 1.00 
beta_pi [14] I7CR -4.40 0.03 0.90 -6.20 -5.02 -4.38 -3.74 -2.77 1276 1.00 
beta_pi [15] I7CR 0.32 0.02 0.06 -0.81 -0.08 0.31 0.70 1.51 1381 1.00 
beta_pi [16] I7CR -1.56 0.02 0.59 -2.72 -1.93 -1.53 -1.17 -0.47 1326 1.00 
beta_pi [17] I7CR 1.02 0.01 0.51 0.07 0.69 1.02 1.33 2.03 1274 1.00 
beta_pi [18] I7CR 1.75 0.02 0.64 0.51 1.35 1.72 2.16 3.07 1243 1.00 
beta_pi [19] I7CR -2.25 0.02 0.64 -3.58 -2.69 -2.21 -1.78 -1.07 869 1.00 
beta_pi [20] I7CR 2.46 0.02 0.57 1.40 2.06 2.45 2.85 3.63 1339 1.00 
beta_pi [21] I8CR 2.06 0.02 0.51 1.21 1.71 2.01 2.39 3.18 856 1.00 
beta_pi [22] I8CR -0.14 0.01 0.46 -1.13 -0.44 -0.13 0.16 0.72 1470 1.00 
beta_pi [23] I8CR 0.88 0.01 0.47 0.02 0.58 0.86 1.18 1.86 1311 1.00 
beta_pi [24] I8CR 0.52 0.01 0.49 -0.51 0.22 0.51 0.83 1.49 1310 1.00 
beta_pi [25] I8CR 1.86 0.02 0.63 0.65 1.44 1.84 2.26 3.15 1093 1.00 
beta_pi [26] I8CR 2.11 0.02 0.76 0.66 1.60 2.09 2.60 3.72 1328 1.00 
beta_pi [27] I8CR 4.84 0.04 1.17 2.67 4.05 4.79 5.59 7.34 1045 1.00 
beta_pi [28] I8CR 2.21 0.03 1.46 -0.50 1.20 2.21 3.20 5.08 1771 1.00 
beta_pi [29] I12CR 4.37 0.03 0.91 2.77 3.73 4.31 4.88 6.36 879 1.00 
beta_pi [30] I12CR -2.26 0.02 0.85 -4.00 -2.81 -2.22 -1.69 -0.66 1655 1.00 
beta_pi [31] I12CR 1.64 0.03 0.88 -0.02 1.00 1.61 2.25 3.41 1144 1.00 
beta_pi [32] I12CR -5.06 0.03 0.94 -7.06 -5.70 -4.97 -4.38 -3.44 904 1.00 
beta_pi [33] I12CR -1.17 0.01 0.43 -2.05 -1.47 -1.17 -0.85 -0.36 1307 1.00 
beta_pi [34] I12CR 2.93 0.02 0.54 1.98 2.55 2.87 3.28 4.13 839 1.00 
beta_pi [35] I12CR 0.59 0.01 0.57 -0.51 0.21 0.60 0.96 1.74 1634 1.00 
beta_pi [36] I12CR 5.03 0.03 1.00 3.30 4.33 4.96 5.63 7.26 1123 1.00 
beta_pi [37] I14CR 2.12 0.02 0.69 0.91 1.64 2.08 2.54 3.59 881 1.00 
beta_pi [38] I14CR -1.58 0.02 0.67 -2.89 -2.02 -1.57 -1.10 -0.31 926 1.00 
beta_pi [39] I14CR 0.31 0.02 0.62 -0.81 -0.10 0.30 0.71 1.57 1043 1.00 
beta_pi [40] I14CR -0.69 0.02 0.65 -1.95 01.13 -0.65 -0.25 0.52 1420 1.00 
beta_pi [41] I14CR -1.40 0.02 0.58 -2.62 -1.78 -1.40 -1.00 -0.34 1103 1.00 
beta_pi [42] I14CR 7.70 0.05 1.18 5.68 6.86 7.62 8.46 10.15 632 1.00 
beta_pi [43] I14CR 1.90 0.03 1.21 -0.42 1.14 1.84 2.69 4.37 1446 1.00 
beta_pi [44] I14CR -2.10 0.03 1.16 -4.42 -2.90 -2.03 -1.30 0.07 1114 1.00 
beta_pi [45] I15CR 3.27 0.03 0.75 1.96 2.76 3.22 3.72 4.94 639 1.00 
beta_pi [46] I15CR -5.29 0.03 0.77 -6.94 -5.75 -5.23 -4.76 -3.95 549 1.00 
beta_pi [47] I15CR 0.43 0.01 0.25 -0.05 0.26 0.43 0.60 0.92 1546 1.00 
beta_pi [48] I15CR -0.18 0.01 -0.25 -0.68 -0.34 -0.16 -0.01 0.27 962 1.00 
beta_pi [49] I15CR 7.81 0.04 1.13 5.90 6.99 7.75 8.54 10.21 855 1.00 
beta_pi [50] I15CR 0.65 0.04 1.28 -1.96 -0.18 0.65 1.51 3.17 1138 1.00 
beta_pi [51] I15CR 0.19 0.03 1.17 -2.26 -0.60 0.22 1.01 2.43 1386 1.00 
beta_pi [52] I15CR 1.97 0.02 1.07 -0.05 1.25 1.94 2.66 4.15 1839 1.00 
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Figure 2 and Figure 3 show posterior intervals and point 
estimates of item difficulty and discrimination and kernel 
density graphs for the parameters, respectively. The 
distribution of item difficulty and discrimination in the kernel 
density graphs are normal. 

 DISCUSSION 

The overarching goal of this study is to determine if the 
ISACC items are helpful in assessing students’ 
interdisciplinary understanding using the Bayesian IRT 

Table 4 (Continued). Parameter estimates with Bayesian approach 
Item parameter Item Mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat 
beta_pi [53] I19CR 4.97 0.03 0.86 3.42 4.39 4.86 5.51 6.76 627 1.00 
beta_pi [54] I19CR -0.86 0.02 0.63 -2.15 -1.25 -0.84 -0.42 0.28 1138 1.00 
beta_pi [55] I19CR 1.98 0.02 0.66 0.74 1.54 1.96 2.40 3.31 1087 1.00 
beta_pi [56] I19CR -0.36 0.02 0.70 -1.76 -0.82 -0.33 0.12 0.99 1229 1.00 
beta_pi [57] I19CR 3.36 0.02 0.86 1.76 2.73 3.30 3.96 5.09 1193 1.00 
beta_pi [58] I19CR 0.56 0.02 0.97 -1.48 -0.06 0.58 1.26 2.39 1616 1.00 
beta_pi [59] I19CR 1.59 0.03 0.96 -0.43 0.96 1.59 2.21 3.51 1276 1.00 
beta_pi [60] I19CR 0.98 0.02 1.03 -1.04 0.32 0.97 1.68 2.93 1950 1.00 

 

 

 
Figure 2. Posterior intervals and point estimates of item difficulty and discrimination 
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models by determining if the results of the item parameters 
generated by the traditional IRT models are similar or not. 
Thus, the approach using Bayesian IRT analysis provides an 
opportunity for cross-validation to generalize the use of the 
ISACC. The item parameters from the traditional and Bayesian 
methods are similar and consistent. The Bayesian models tend 
more toward the center of the distribution than the 
conventional models. This result indicates that the Bayesian 
models are likely to estimate the difficulty of the items to be 
easier than the traditional models. However, the values are not 
significantly different from one another. The 95% credible 
interval for each item showed zero in the interval for only one 
item, I9MC. Note that, unlike a confidence interval, a credible 
interval is defined as a probability that the true parameter 
value is in the interval. The application of the MCMC in 
estimating item parameters is robust. The trace plots of each 

item represented the convergence through which the MCMC 
was implemented successfully. 

However, the chosen priors yielded similar results to 
maximum likelihood-based inferences, which often happens 
in large samples. Subjective priors have been the most 
controversial aspect of Bayesian statistics. Some researchers 
believe that subjective priors can compromise the integrity of 
the study results and can even lead to conclusions driven not 
by the data but by a prior. Thus, choosing informative priors 
that quantify prior beliefs or empirical evidence about the 
possible values for the previous data is recommended. Even 
though the results in the Bayesian approach are similar to the 
results of the traditional IRT, there are some advantages in 
Bayesian modeling; it makes inferences about basic 
parameters, intermediate parameters, and hyperparameters 

 

 
Figure 3. Kernel density graphs for items 
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simultaneously, where the frequentist approach does not. 
Ironically, in frequentist IRT modeling, prediction of theta 
(i.e., actual measurement of persons) must appear in a second, 
post-estimation process (Furr, 2017). In addition, estimates 
through Bayesian methods are asymptotically distribution 
free, which lowers the dependency on the data distribution. 
The most crucial advantage of Bayesian methods is when the 
data have small samples and/or inaccurate estimation of 
parameters with extreme response patterns (Lord, 1986). Luo 
et al. (2013) reported that Bayesian IRT modeling using an 
MCMC approach produces more accurate results when 
normality assumptions on errors are violated and these 
violations are taken into account. As data in this study 
included a large sample size of 454 with a not-skewed normal 
distribution, the results may not benefit from the strength of 
Bayesian modeling. 

The systematic development and analysis processes used 
can be expected to yield assessment tools that have strong 
psychometric properties and will be valuable for teachers in 
the classroom. If developing another version of the ISACC, a 
larger sample would be needed to have more robust statistical 
results. A larger sample size makes it possible to conduct 
different IRT models with more parameters (e.g., 3PLM).  

Additionally, the results of the ISACC should be inferenced 
with generalizability. Different demographic information or 
contextual factors (e.g., a low socioeconomic status sample 
versus a high socioeconomic status sample, different raters, 
different geographical education settings) lead to different 
assessments’ inferences (Kane, 2006; Nitko & Brookhart, 
2010). In order to investigate the impact of the differences, the 
items can be administered to a sample of students from 
different backgrounds, for example, students in different 
counties. Such differences influence the cognitive process of 
ID understanding and demonstrate different patterns in the 
ISACC. Statistical models or qualitative models can be used as 
methods or tools to interpret the patterns of the data collected 
through assessment tasks. For example, differential item 
functioning (DIF) analysis is concerned with identifying 
significant differences across subgroups (e.g., commonly 
gender or ethnicity). The DIF provides helpful evidence to 
determine the measurement bias across the groups, 
identifying assessment items that are differentially difficult 
for examinees with the same ability regarding a construct. The 
results of the study imply additional research that requires the 
development and validation of the ISACC. A new version, 
ISACC II has been finalized based on the current 
psychometrical feedback and the statistical results are under 
analysis. The results will be reported elsewhere in the near 
future. 
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APPENDIX A  

Code for 2PLM and GPCM 

###load Rstan package 

library(rstan) 

rstan_options(auto_write=TRUE) 

options(mc.cores=parallel::detectCores()) 

install.packages(“mirt”) 

library(mirt) 

library(“acnr”) 

library(“bayesplot”) 

###################################################################################### 

irt_code<-” 

data{ 

int<lower=2, upper=10> k_pi[8]; //number of categories for each polytomous item 

int <lower=0> nk; //total number of categories in all polytomous items 

int<lower=0> k_index[9]; //categories index used for ragged structure 

int <lower=0> n_student; //number of individuals 

int <lower=0> n_item; //number of items 

int <lower=0> n_di; //number of dichotomous items 

int <lower=0> n_pi; //number of polytomous items 

int<lower=0> Y[n_student,n_item]; //array of responses 

} 

parameters { 

real<lower=0> alpha_di [n_di]; //item discrimination for dichotomous items 

real beta_di [n_di]; //item difficulty for dichotomous items 

real<lower=0> alpha_pi [n_pi]; //item discrimination for polytomous items 

vector[nk] beta_pi; //item difficulty parameter for polytomous items 

real mu_beta_di; //mean difficulty of dichotomous items 

real<lower=0> sigma_beta_di; //difficulty sd of dichotomous items 

real mu_beta_pi; //mean difficulty of polytomous items 

real<lower=0> sigma_beta_pi; //difficulty sd of polytomous items 

vector[n_student] theta; //latent trait 

} 

model{ 

theta ~ normal(0,1); 

beta_di ~ normal(mu_beta_di,sigma_beta_di); 

mu_beta_di ~ normal(0,5); 

sigma_beta_di ~ cauchy(0,5); 

beta_pi ~ normal(mu_beta_pi,sigma_beta_pi); 

mu_beta_pi ~ normal(0,5); 

sigma_beta_pi ~ cauchy(0,5); 

alpha_di ~lognormal(0, 1); 

alpha_pi ~lognormal(0, 1); 

for (i in 1:n_student){ 

for (j in 1:n_di){Y[i,j] ~ bernoulli_logit(alpha_di[j]*(theta[i]-beta_di[j])); 

} 

for (j in (n_di+1):n_item){vector[k_pi[j-n_di]+1] p; 

vector[k_pi[j-n_di]] beta=beta_pi[(k_index[j-n_di]+1):k_index[j-n_di+1]]; 

 

p=softmax(cumulative_sum(append_row(rep_vector(0.0, 1), alpha_pi[j-n_di]*(theta[i] - beta)))); 

Y[i,j] ~ categorical(p); 

}} 

} 
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generated_quantities <-” 

generated quantities { 

real theta_rep[n_student] 

int y_rep[n_student]; 

for (i in 1:n_student) 

theta_rep[n_student] <- normal_rng(0.1)) 

y_rep[i] <-bernoulli_rng(inv_logit((alpha_di[j]*(theta[i]-beta_di[j]))) 

} 

“ 

###################################################################################### 

resp<-read.table(“resp.csv”,header=T,sep=“,”) 

apply(resp,2,table) 

#number of polytomous and dichotomous items 

n_pi<-length(which(apply(resp,2,max)>1)) 

n_di<-length(which(apply(resp,2,max)==1)) 

#number of categories for each polytous item 

k_pi<-apply(resp,2,max)[1:n_pi] 

#total number of categories 

nk<-sum(k_pi) 

resp<-resp[,c(9:19,1:8)] 

resp[,12:19]<-resp[,12:19]+1 

###index used in ragged data structure in stan 

k_index<-c(seq(0,12,by=6),seq(20,60,by=8)) 

I<-dim(resp)[1] 

J<-dim(resp)[2] 

data_irt<-list(n_student=I,n_item=J,n_pi=n_pi,n_di=n_di,Y=resp, 

k_index=k_index,k_pi=k_pi,nk=nk) 

irt_mixed <- stan(model_code=irt_code, data=data_irt, iter =500,chains=4) 

irt_mixed1 <- stan(fit=irt_mixed, data=data_irt, iter =600,chains=4) 

print(irt_mixed1,par=c(“alpha_di”,”alpha_pi”,”beta_di”,”beta_pi”)) 

y_rep <- extract(irt_mixed1, pars=“y_rep”, permuted=true)$y_rep 

str(y_rep) 

stan_trace(irt_mixed1, inc_warmup=TRUE, pars=‘alpha_di[1]’) 

stan_trace(irt_mixed1, inc_warmup=TRUE, pars=‘alpha_pi[1]’) 

stan_trace(irt_mixed1, inc_warmup=TRUE, pars=‘beta_di[1]’)  

stan_trace(irt_mixed1, inc_warmup=TRUE, pars=‘beta_pi[1]’)  

stan_plot(irt_mixed1, inc_warmup=TRUE, pars=‘alpha_di’) 

stan_plot(irt_mixed1, inc_warmup=TRUE, pars=‘alpha_pi’) 

stan_plot(irt_mixed1, inc_warmup=TRUE, pars=‘beta_di’) 

stan_plot(irt_mixed1, inc_warmup=TRUE, pars=‘beta_pi[1]’) 

stan_dens(irt_mixed1, inc_warmup=TRUE, pars=‘alpha_di’) 

stan_dens(irt_mixed1, inc_warmup=TRUE, pars=‘alpha_pi’) 

stan_dens(irt_mixed1, inc_warmup=TRUE, pars=‘beta_di’) 

stan_dens(irt_mixed1, inc_warmup=TRUE, pars=‘beta_pi’) 

 

sink(“stan_output.txt”) 

print(irt_mixed1,digit=3) 

sink() 

##################################################################################### 

#estimate the 2pl/gpcm models with MMLE 

library(mirt) 

#path<-”C:\\Users\\jacky\\Dropbox\\Collaboration Project” 

#setwd(path) 

resp<-read.table(“resp.csv”,header=T,sep=“,”) 

resp<-resp[,c(9:19,1:8)] 
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#locate max item point for each item 

mp<-apply(resp,2,max) 

#item type 

it_ty<-rep(NA,19) 

it_ty[which(mp==1)]=“2PL” 

it_ty[which(mp!=1)]=“gpcm” 

mod<-mirt(resp,1,itemtype=it_ty) 

par<-coef(mod,IRTpars=TRUE,simplify=TRUE)$item 

print(par) 
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