Research Article

Visual Context and Relevance in Life Cycle Diagrams

Interdisciplinary Journal of Environmental and Science Education, 2021, 17(1), e2224,
Full Text (PDF)


Graphics, graphs, diagrams, and visual representations of information play an integral role in science education and communication settings. The production of such graphics involves hundreds of design decisions, from content and layout to colour and illustration style, and any of these decisions has the potential to influence viewer’s experience and interpretation. While many studies have examined the influence of design on information transfer, comprehension, recall and so on, less attention has been given to affective impacts. In this study, we examined the impact of visual context in a biology life cycle diagram on viewers’ perception of relevance, sense of concern, and others. Results indicated that the presence of a contextual background in the diagram was associated with higher perception of relevance (related to personal experience). Context may also correlate with greater concern, though further research is needed to confirm this.


Affect relevance visual context diagram design


Wood, M., & Stocklmayer, S. (2021). Visual Context and Relevance in Life Cycle Diagrams. Interdisciplinary Journal of Environmental and Science Education, 17(1), e2224.
Wood, M., and Stocklmayer, S. (2021). Visual Context and Relevance in Life Cycle Diagrams. Interdisciplinary Journal of Environmental and Science Education, 17(1), e2224.
Wood M, Stocklmayer S. Visual Context and Relevance in Life Cycle Diagrams. INTERDISCIP J ENV SCI ED. 2021;17(1):e2224.
Wood M, Stocklmayer S. Visual Context and Relevance in Life Cycle Diagrams. INTERDISCIP J ENV SCI ED. 2021;17(1), e2224.
Wood, Matthew, and Susan Stocklmayer. "Visual Context and Relevance in Life Cycle Diagrams". Interdisciplinary Journal of Environmental and Science Education 2021 17 no. 1 (2021): e2224.
Wood, Matthew et al. "Visual Context and Relevance in Life Cycle Diagrams". Interdisciplinary Journal of Environmental and Science Education, vol. 17, no. 1, 2021, e2224.


  1. Bazire, M., & Brézillon, P. (2005). Understanding context before using it. Modeling and using context, 3554, 29–40. doi:10.1007/11508373_3
  2. Bennett, J., Hogarth, S., & Lubben, F. (2003). A systematic review of the effects of context-based and science-technology-society (sts) approaches in the teaching of secondary science. EPPI-Centre, Social Science Research Unit, Institute of Education, University of London.
  3. Bernaards, C. A., & Jennrich, R. I. (2005). Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis. Educational and Psychological Measurement, 65, 676–696. Retrieved from
  4. Buchanan, E. (2016). R - exploratory factor analysis lecture & example. Retrieved from
  5. Butterworth, G. (1992). Context and cognition in models of cognitive growth. In Context and cognition: Ways of learning and knowing (pp. 1-13). Hertfordshire: Harvester Wheatsheaf.
  6. Ceci, S. J., & Roazzi, A. (1994). The effect of context on cognition: postcards from brazil. In R. J. Sternberg & R. K. Wagner (Eds.), Mind in context: Interactionist perspectives on human intelligence (pp. 74–104). Cambridge: Cambridge University Press.
  7. Coakes, S. J., Steed, L., & Ong, C. (2010). SPSS: analysis without anguish: version 17.0 for windows. Milton: John Wiley & Sons.
  8. Cook, M. P. (2006). Visual representations in science education: the influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073–1091. doi:10.1002/sce.20164
  9. Cordova, D. I., & Lepper, M. R. (1996). Intrinsic motivation and the process of learning: beneficial effects of contextualization, personalization, and choice. Journal of Educational Psychology, 88(4), 715–730. doi:10.1037/0022-0663.88.4.715
  10. Frymier, A. B., & Shulman, G. M. (1995). “What’s in it for me?”: increasing content relevance to enhance students’ motivation. Communication Education, 44(1), 40–50. doi:10.1080/03634529509378996
  11. Gilbert, J. K. (2006). On the nature of “context” in chemical education. International Journal of Science Education, 28(9), 957–976. doi:10.1080/09500690600702470
  12. Hegarty, M., Smallman, H. S., & Stull, A. T. (2012). Choosing and using geospatial displays: effects of design on performance and metacognition. Journal of Experimental Psychology: Applied, 18(1), 1–17. doi:10.1037/a0026625
  13. Heidig, S., Müller, J., & Reichelt, M. (2015). Emotional design in multimedia learning: differentiation on relevant design features and their effects on emotions and learning. Computers in Human Behavior, 44, 81–95. doi:10.1016/j.chb.2014.11.009
  14. Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–127. doi:10.1207/s15326985ep4102_4
  15. Hulleman, C. S., Godes, O., Hendricks, B. L., & Harackiewicz, J. M. (2010). Enhancing interest and performance with a utility value intervention. Journal of Educational Psychology, 102(4), 880–895. doi:10.1037/a0019506
  16. Hulleman, C. S., & Harackiewicz, J. M. (2009). Promoting interest and performance in high school science classes. Science (New York, N.Y.), 326(5958), 1410–2. doi:10.1126/science.1177067
  17. Klassen, S. (2006). A theoretical framework for contextual science teaching. Interchange, 37(1–2), 31–62. doi:10.1007/s10780-006-8399-8
  18. Komsta, L., & Novomestky, F. (2015). Moments: moments, cumulants, skewness, kurtosis and related tests. Retrieved from
  19. Marton, F. (1981). Phenomenography - describing conceptions of the world around us. Instructional Science, 10, 177–200. doi:10.1007/BF00132516
  20. Mayer, R. E., & Moreno, R. (2002). Animation as an aid to multimedia learning. Educational Psychology Review, 14(1), 87–100. doi:10.1023/A:1013184611077
  21. Park, B., Flowerday, T., & Brünken, R. (2015). Cognitive and affective effects of seductive details in multimedia learning. Computers in Human Behavior, 44, 267–278. doi:10.1016/j.chb.2014.10.061
  22. Park, B., Moreno, R., Seufert, T., & Brünken, R. (2011). Does cognitive load moderate the seductive details effect? A multimedia study. Computers in Human Behavior, 27, 5–10. doi:10.1016/j.chb.2010.05.006
  23. Plass, J. L., Heidig, S., Hayward, E. O., Homer, B. D., & Um, E. (2014). Emotional design in multimedia learning: effects of shape and color on affect and learning. Learning and Instruction, 29, 128–140. doi:10.1016/j.learninstruc.2013.02.006
  24. R Core Team. (2016). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from
  25. Revelle, W. (2016). Psych: procedures for personality and psychological research. Evanston, Illinois, USA: Northwestern University. Retrieved from
  26. RStudio Team. (2015). RStudio: integrated development for r. Boston, MA: RStudio Inc. Retrieved from
  27. Schneider, S., Nebel, S., & Rey, D. (2016). Decorative pictures and emotional design in multimedia learning. Learning and Instruction, 44, 65–73. doi:10.1016/j.learninstruc.2016.03.002
  28. Schraw, G., & Lehman, S. (2001). Situational interest : A review of the literature and directions for future research. Educational Psychology Review, 13(1), 23–53. doi:10.1023/A:1009004801455
  29. ScienceAlert Pty Ltd. (n.d.). ScienceAlert media kit. Retrieved from
  30. Smallman, H. S., & St John, M. (2005). Naive realism: limits of realism as a display principle. Proceedings of the Human Factors and Ergonomics Society 49th Annual Meeting. doi:10.1177/154193120504901714
  31. Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th Ed.). Boston: Pearson Education.
  32. Trumbo, J. (2000). Essay: seeing science: research opportunities in the visual communication of science. Science Communication, 21(4), 379–391. doi:10.1177/1075547000021004004
  33. Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s. New York: Springer.
  34. Walker, G. J. (2012). Motivational features of science show. Australian National University.
  35. Wickham, H. (2009). Ggplot2: elegant graphics for data analysis. New York: Springer-Verlag.
  36. Wickham, H., & Francois, R. (2016). Dplyr: a grammar of data manipulation. Retrieved from
  37. Wigfield, A., & Eccles, J. S. (2000). Expectancy–value theory of achievement motivation. Contemporary Educational Psychology, 25(1), 68–81. doi:10.1006/ceps.1999.1015
  38. Wiley, J. (2019). Picture this! effects of photographs, diagrams, animations, and sketching on learning and beliefs about learning from a geoscience text. Applied Cognitive Psychology, 33(1), 9–19. doi:10.1002/acp.3495
  39. Wood, M., & Stocklmayer S. M. (2018). Exploring the relationship between visual context and affect in diagram interpretation. In P. Chapman, G. Stapleton, A. Moktefi, S. Perez-Kriz, & F. Bellucci (Eds.), Diagrammatic Representation and Inference. Diagrams 2018. Lecture Notes in Computer Science, vol 10871. Springer, Cham. doi:10.1007/978-3-319-91376-6_46


Creative Commons License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.