INTERDISCIPLINARY JOURNAL OF ENVIRONMENTAL AND SCIENCE EDUCATION
Research Article

Examining Students’ Spatial Ability and Its Impact on the Learning of Stereochemistry

Interdisciplinary Journal of Environmental and Science Education, 2022, 18(4), e2288, https://doi.org/10.21601/ijese/12099
Publication date: May 18, 2022
Full Text (PDF)

ABSTRACT

The subject of stereochemistry in considered a difficult concept in organic chemistry because of its dependence on spatial ability. The challenges that students face in learning about stereochemistry can lead to poor performance and alternative conceptions, which in turn might hinder their progresses in various science and engineering academic careers. Development of successful conceptual understanding to solve stereochemistry related problems requires that students have a thorough understanding of the various types of spatial abilities in stereochemistry such as mental rotation and visualization of three-dimensional chemical molecules. This research project of the City College of New York (a minority serving, public, urban, and commuter institution) investigates some of the challenges that students face and approaches that students rely on to solve stereochemistry related problems and the role of spatial ability in the learning process. Likert-type surveys, spatial ability tests, and various open-ended questions were used to assess the understandings of 86 participants. The data indicated that one of barriers to learning about stereochemistry is the students’ inabilities to mentally rotate and visualize three-dimensional molecular structures by looking at their chemical formulae, assigning priority functional groups, determining configurations, and remembering the various rules that are necessary for solving stereochemistry related questions. Spatial ability was found to be one of the factors for success in stereochemistry, and majority of the students believe that with practice and the use of three-dimensional molecular modeling kits, they can improve their spatial abilities in stereochemistry.

KEYWORDS

spatial ability stereochemistry organic chemistry

CITATION (APA)

Salame, I. I., & Kabir, S. A. (2022). Examining Students’ Spatial Ability and Its Impact on the Learning of Stereochemistry. Interdisciplinary Journal of Environmental and Science Education, 18(4), e2288. https://doi.org/10.21601/ijese/12099
Harvard
Salame, I. I., and Kabir, S. A. (2022). Examining Students’ Spatial Ability and Its Impact on the Learning of Stereochemistry. Interdisciplinary Journal of Environmental and Science Education, 18(4), e2288. https://doi.org/10.21601/ijese/12099
Vancouver
Salame II, Kabir SA. Examining Students’ Spatial Ability and Its Impact on the Learning of Stereochemistry. INTERDISCIP J ENV SCI ED. 2022;18(4):e2288. https://doi.org/10.21601/ijese/12099
AMA
Salame II, Kabir SA. Examining Students’ Spatial Ability and Its Impact on the Learning of Stereochemistry. INTERDISCIP J ENV SCI ED. 2022;18(4), e2288. https://doi.org/10.21601/ijese/12099
Chicago
Salame, Issa I., and Sheikh Aleena Kabir. "Examining Students’ Spatial Ability and Its Impact on the Learning of Stereochemistry". Interdisciplinary Journal of Environmental and Science Education 2022 18 no. 4 (2022): e2288. https://doi.org/10.21601/ijese/12099
MLA
Salame, Issa I. et al. "Examining Students’ Spatial Ability and Its Impact on the Learning of Stereochemistry". Interdisciplinary Journal of Environmental and Science Education, vol. 18, no. 4, 2022, e2288. https://doi.org/10.21601/ijese/12099

REFERENCES

  1. Alt, D., & Boniel-Nissim, M. (2018). Links between adolescents deep and surface learning approaches, problematic internet use, and fear of missing out (FoMO). Internet Interventions, 13, 30-39. https://doi.org/10.1016/j.invent.2018.05.002
  2. Barnea, N., & Dori, Y. J. (1999). High school chemistry students’ performance and gender differences in a computerized molecular modeling learning environment. Journal of Science Education and Technology, 8(4), 257-271. https://doi.org/10.1023/A:1009436509753
  3. Barrett, T. J., & Hegarty, M. (2016). Effects of interface and spatial ability on manipulation of virtual models in a STEM domain. Computers in Human Behavior, 65, 220-231. https://doi.org/10.1016/j.chb.2016.06.026
  4. Berney, S., Bétrancourt, M., Molinari, G., & Hoyek, N. (2015). How spatial abilities and dynamic visualizations interplay when learning functional anatomy with 3D anatomical models. Anatomical Sciences Education, 8(5), 452-462. https://doi.org/10.1002/ase.1524
  5. Bilge, A. R., & Taylor, H. A. (2016). Framing the figure: Mental rotation revisited in light of cognitive strategies. Memory & Cognition, 45(1), 63-80. https://doi.org/10.3758/s13421-016-0648-1
  6. Carter, C. S., LaRussa, M. A., & Bodner, G. M. (1987). A study of two measures of spatial ability as predictors of success in different levels of general chemistry. Journal of Research in Science Teaching, 24(7), 645-657. https://doi.org/10.1002/tea.3660240705
  7. Chien, K.-P., Tsai, C.-Y., Chen, H.-L., Chang, W.-H., & Chen, S. (2015). Learning differences and eye fixation patterns in virtual and physical science laboratories. Computers & Education, 82, 191-201. https://doi.org/10.1016/j.compedu.2014.11.023
  8. Dawson, C. (2019). Tackling Limited Spatial Ability: Lowering One Barrier into STEM? European Journal of Science and Mathematics Education, 7(1), 14-31. https://doi.org/10.30935/scimath/9531
  9. Dominguez, M. G., Gutierrez, J. M., Gonzalez, C. R., & Corredeaguas, C. M. M. (2012). Methodologies and tools to improve spatial ability, Procedia-Social and Behavioral Sciences, 51, 736-744. https://doi.org/10.1016/j.sbspro.2012.08.233
  10. Dori, Y. J., & Barak. M. (2001). Virtual and physical molecular modeling: Fostering model perception and spatial understanding. Educational Technology & Society, 4(1), 61-74.
  11. Dori, Y. J., Barak, M., & Adir, N. (2003). A web-based chemistry course as a means to foster freshmen learning. Journal of Chemical Education, 80(9), 1084-1092. https://doi.org/10.1021/ed080p1084
  12. Ferguson, A. M., Maloney, E. A., Fugelsang, J., & Risko, E. F. (2015). On the relation between math and spatial ability: The case of math anxiety. Learning and Individual Differences, 39, 1-12. https://doi.org/10.1016/j.lindif.2015.02.007
  13. Ferk, V., Vrtacnik, M., Blejec, A., & Gril, A. (2003). Students understanding of molecular structure representations. International Journal of Science Education, 25(10), 1227-1245. https://doi.org/10.1080/0950069022000038231
  14. Furio, C., Calatayud, M. L., Barcenas, S. L., & Padilla, O. M. (2000). Functional fixedness and functional reduction as common sense reasonings in chemical equilibrium and in geometry and polarity of molecules. Science Education, 84(5), 545-565. https://doi.org/10.1002/1098-237X(200009)84:5<545::AID-SCE1>3.0.CO;2-1
  15. Harle, M., & Towns, M. (2011). A review of spatial ability literature, its connection to chemistry, and implications for instruction. Journal of Chemical Education, 88(3), 351-360. https://doi.org/10.1021/ed900003n
  16. Harris, P. A. (2019). Spatializing an undergraduate chemistry curriculum: Action research to assist students with low visual-spatial ability [Ed.D. dissertation, Northcentral University].
  17. Hauptman, H., & Cohen, A. (2011). The synergetic effect of learning styles on the interaction between virtual environments and the enhancement of spatial thinking. Computers & Education, 57(3), 2106-2117. https://doi.org/10.1016/j.compedu.2011.05.008
  18. Hausmann, M., Slabbekoorn, D., Goozen, S. H. M. V., Cohen-Kettenis, P. T., & Gunturkun, O. (2000). Sex hormones affect spatial abilities during the menstrual cycle. Behavioral Neuroscience, 114(6), 1245-1250. https://doi.org/10.1037/0735-7044.114.6.1245
  19. Hegarty, M. (2014). Spatial thinking in undergraduate science education. Spatial Cognition and Computation: An Interdisciplinary Journal, 14(2), 142-167. https://doi.org/10.1080/13875868.2014.889696
  20. Hegarty, M., & Kozhevnikov, M. (1999). Types of visual‐spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684‐689. https://doi.org/10.1037/0022-0663.91.4.684
  21. Höffler, T. N., & Leutner, D. (2011). The role of spatial ability in learning from instructional animations–Evidence for an ability-as-compensator hypothesis. Computers in Human Behavior, 27(1), 209-216. https://doi.org/10.1016/j.chb.2010.07.042
  22. Jansen, P., & Heil, M. (2009). Gender differences in mental rotation across adulthood. Experimental Aging Research, 36(1), 94-104.https://doi.org/10.1080/03610730903422762
  23. Jirout, J. J., & Newcombe, N. S. (2015). Building blocks for developing spatial skills. Evidence from a large, representative U.S. sample. Psychological Science, 26(3), 302‐310. https://doi.org/10.1177/0956797614563338
  24. José, T. J., & Williamson, V. M. (2008). The effects of a two-year molecular visualization experience on teachers attitudes, content knowledge, and spatial ability. Journal of Chemical Education, 85(5), 718. https://doi.org/10.1021/ed085p718
  25. Krajcik, J. S. (1991). Developing students’ understanding of chemical concepts. In Y. S. M. Glynn, R. H. Yanny, & B. K. Britton (Eds.), The psychology of learning science: International perspective on the psychological foundations of technology-based learning environments (pp. 117-145). Erlbaum.
  26. Maeda, Y., & Yoon, S. Y. (2013). A meta‐analysis on gender differences in mental rotation ability measured by the Purdue spatial visualization tests: Visualization of rotations (PSVT: R). Educational Psychology Review, 25 (1), 69-94. https://doi.org/10.1007/s10648-012-9215-x
  27. Martín-Gutiérrez, J., Mora, C. E., Añorbe-Díaz, B., & González-Marrero, A. (2017). Virtual technologies trends in education. EURASIA Journal of Mathematics, Science and Technology Education, 13(2), 469-486. https://doi.org/10.12973/eurasia.2017.00626a
  28. Meneghetti, C., Cardillo, R., Mammarella, I. C., Caviola, S., & Borella, E. (2016). The role of practice and strategy in mental rotation training: Transfer and maintenance effects. Psychological Research, 81(2), 415-431. https://doi.org/10.1007/s00426-016-0749-2
  29. Moè, A. (2016). Does experience with spatial school subjects favour girls mental rotation performance? Learning and Individual Differences, 47, 11-16. https://doi.org/10.1016/j.lindif.2015.12.007
  30. Mohler, J. L. (2009). Computer graphics education: Where and how do we develop spatial ability? In Proceedings of Eurographics (pp. 79-86). Lausanne, Switzerland.
  31. Nakhleh, M. B. (1992). Why some students don’t learn chemistry. Journal of Chemical Education, 69(3), 191-196. https://doi.org/10.1021/ed069p191
  32. Oliver-Hoyo, M., & Babilonia-Rosa, M. A. (2017). Promotion of spatial skills in chemistry and biochemistry education at the college level. Journal of Chemical Education, 94(8), 996-1006. https://doi.org/10.1021/acs.jchemed.7b00094
  33. Paivio, A. (1986) Mental representations: A dual coding approach. Oxford University Press.
  34. Peters, M. (2005). Sex differences and the factor of time in solving Vandenberg and Kuse mental rotation problems. Brain and Cognition, 57(2), 176-184. https://doi.org/10.1016/j.bandc.2004.08.052
  35. Pribyl, J. R., & Bodner, G. M. (1987). Spatial ability and its role in organic chemistry: A study of four organic courses. Journal of Research in Science Teaching, 24(3), 229-240. https://doi.org/10.1002/tea.3660240304
  36. Rodán, A., Contreras, M. J., Elosúa, M. R., & Gimeno, P. (2016). Experimental but not sex differences of a mental rotation training program on adolescents. Frontiers of Psychology, 7(1050), 1‐12. https://doi.org/10.3389/fpsyg.2016.01050
  37. Rohde, T. E., & Thompson, L. A. (2007). Predicting academic achievement with cognitive ability. Intelligence, 35, 83‐92. https://doi.org/10.1016/j.intell.2006.05.004
  38. Sadoski, M. Goetze, T. & Fritz, J. B. (1993) Impact of concreteness on comprehensibility, interest, and memory for text: Implications for dual coding theory and text design. Journal of Educational Psychology, 85, 291-304. https://doi.org/10.1037/0022-0663.85.2.291
  39. Sadoski, M., Paivio, A., & Goetze, T. (1991). A critique of schema theory in reading and a dual coding alternative. Reading Research Quarterly, 25, 463-485. https://doi.org/10.2307/747898
  40. Sorby, S., Casey, B., Veurink, N., & Dulaney, A. (2013). The role of spatial training in improving spatial and calculus performance in engineering students. Learning and Individual Differences, 26, 20-29. https://doi.org/10.1016/j.lindif.2013.03.010
  41. Spearman, C. E. (1927). The abilities of man: Their nature and measurement. Macmillan.
  42. Stieff, M. (2007). Mental rotation and diagrammatic reasoning in science. Learning and Instruction, 17(2), 219-234. https://doi.org/10.1016/j.learninstruc.2007.01.012
  43. Stieff, M., Lira, M., & Sesutter, D. (2014). Representational competence and spatial thinking in STEM. In Proceedings of International Conference of the Learning Sciences (pp. 987-991).
  44. Stieff, M., Ryu, M., Dixon, B., & Hegarty, M. (2012). The role of spatial ability and strategy preference for spatial problem solving in organic chemistry. Journal of Chemical Education, 89(7), 854-859. https://doi.org/10.1021/ed200071d
  45. Tarampi, M. R., Heydari, N., & Hegarty, M. (2016). A tale of two types of perspective taking. Psychological Science, 27(11), 1507-1516. https://doi.org/10.1177/0956797616667459
  46. Terlecki, M., Newcombe, N., & Little, M. (2008). Durable and generalized effects of spatial experience on mental rotation: Gender differences in growth patterns. Applied Cognitive Psychology, 22, 996-1013. https://doi.org/10.1002/acp.1420
  47. Tuckey, H., & Salvaratnam, M. (1993). Studies involving three-dimensional visualization skills in chemistry: A review. Studies in Science Education, 21(1), 99-121. https://doi.org/10.1080/03057269308560015
  48. Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599-604. https://doi.org/10.2466/pms.1978.47.2.599
  49. Voyer, D., Voyer, S. & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta‐analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250‐270. https://doi.org/10.1037/0033-2909.117.2.250
  50. Wu, H.-K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465-492. https://doi.org/10.1002/sce.10126
  51. Yang, E.-M., Andre, T., Greenbowe, T. J., & Tibell, L. (2003). Spatial ability and the impact of visualization/animation on learning electrochemistry. International Journal of Science Education, 25(3), 329-349. https://doi.org/10.1080/09500690210126784
  52. Yuan, L., Kong, F., Luo, Y., Zeng, S., Lan, J., & You, X. (2019). Gender differences in large-scale and small-scale spatial ability: A systematic review based on behavioral and neuroimaging research. Frontiers in Behavioral Neuroscience, 13, 128. https://doi.org/10.3389/fnbeh.2019.00128

LICENSE

Creative Commons License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.