Research Article

Impact of an Experiment-Based Intervention on Pre-Service Primary School Teachers’ Experiment-Related and Science Teaching-Related Self-Concepts

Interdisciplinary Journal of Environmental and Science Education, 2022, 18(1), e2258,
Full Text (PDF)


Teachers’ academic self-concept is considered an important factor influencing their professional competence. Regarding primary science education, positive science (teaching) related self-concepts might encourage teachers to plan and teach ‘minds on’ experiment-based science lessons leading to deep learning processes. However, research on pre- and in-service primary teachers’ self-concepts and influencing factors, such as previous experimental experience, is scarce. Thus, this study investigates the impact of an experiment-based intervention on pre-service primary school teachers’ experiment-related self-concept and self-concepts on planning and teaching experiment-based lessons. The evaluation followed a quasi-experimental, longitudinal (pre-post) design with an experimental group of N = 158 pre-service primary teachers and a baseline group (N = 44), not attending the course. According to the results, pre-service teachers gained little to moderate experimental experience in school and studying at university. Besides, the pre-service teachers with a science major gained significantly more experimental experience than those with other majors during their time at the university. Significant, positive correlations were found between previous experimental experiences and the self-concepts examined in this study. While self-concepts did not change in the baseline group, they increased significantly in the experimental group. One reason for this could be the perception of competence, as the findings reveal positive correlations between changes in self-concepts and perceived experimental competence during the intervention. Regarding the impact of the variable ‘course format’ on reinforcing the self-concepts, participants of the intensive block format seem to have a slight advantage compared to pre-service teachers attending the traditional, weekly course format. Furthermore, the results indicate that the course is equally beneficial for pre-service teachers with and without a science major.


academic self-concept experimental experience experimental competencies professionalization of pre-service primary school teachers


Beudels, M. M., Preisfeld, A., & Damerau, K. (2022). Impact of an Experiment-Based Intervention on Pre-Service Primary School Teachers’ Experiment-Related and Science Teaching-Related Self-Concepts. Interdisciplinary Journal of Environmental and Science Education, 18(1), e2258.
Beudels, M. M., Preisfeld, A., and Damerau, K. (2022). Impact of an Experiment-Based Intervention on Pre-Service Primary School Teachers’ Experiment-Related and Science Teaching-Related Self-Concepts. Interdisciplinary Journal of Environmental and Science Education, 18(1), e2258.
Beudels MM, Preisfeld A, Damerau K. Impact of an Experiment-Based Intervention on Pre-Service Primary School Teachers’ Experiment-Related and Science Teaching-Related Self-Concepts. INTERDISCIP J ENV SCI ED. 2022;18(1):e2258.
Beudels MM, Preisfeld A, Damerau K. Impact of an Experiment-Based Intervention on Pre-Service Primary School Teachers’ Experiment-Related and Science Teaching-Related Self-Concepts. INTERDISCIP J ENV SCI ED. 2022;18(1), e2258.
Beudels, Melanie Marita, Angelika Preisfeld, and Karsten Damerau. "Impact of an Experiment-Based Intervention on Pre-Service Primary School Teachers’ Experiment-Related and Science Teaching-Related Self-Concepts". Interdisciplinary Journal of Environmental and Science Education 2022 18 no. 1 (2022): e2258.
Beudels, Melanie Marita et al. "Impact of an Experiment-Based Intervention on Pre-Service Primary School Teachers’ Experiment-Related and Science Teaching-Related Self-Concepts". Interdisciplinary Journal of Environmental and Science Education, vol. 18, no. 1, 2022, e2258.


  1. Albert, R., & Koster, C. J. (2002). Empirie in Linguistik und Sprachlehrforschung. Ein methodologisches Arbeitsbuch [Empirical research in linguistics and language teaching. A methodological workbook]. Tübingen, Germany: Narr.
  2. Appleton, K. (2007). Elementary Science Teaching. In S. K. Abell & N. G. Lederman (Eds.), Handbook of Research on Science Education (pp. 493–535). Mahwah, NJ: Lawrence Erlbaum.
  3. Arens, A. K., & Jansen, M. (2016). Self-concepts in reading, writing, listening, and speaking: A multidimensional and hierarchical structure and its generalizability across native and foreign languages. Journal of Educational Psychology, 108(5), 646–664.
  4. Atzert, R., John, R., Preisfeld, A., & Damerau, K. (2020). Der Einfluss kriterialer, sozialer und individueller Bezugsnormen auf das experimentbezogene Fähigkeitsselbstkonzept [The influence of the criterial, social, and temporal reference norm on students’ experiment-related self-concept]. Zeitschrift für Didaktik der Naturwissenschaften, 26, 89–102.
  5. Atzert, R., Tilli, J., Preisfeld, A., & Damerau, K. (under review). Experimentation-related self-concept of German upper secondary school students. RISTAL.
  6. Backhaus, K., Erichson, B., Wulff, P., & Weiber, R. (2018). Multivariate Analysemethoden [Multivariate methods of analysis] (15th ed.). Berlin/Heidelberg, Germany: Springer Gabler.
  7. Bartlett, M. S. (1951). The effect of standardization on a chi square approximation in factor analysis. Biometrika, 38(3/4), 337–344.
  8. Baumert, J., & Kunter, M. (2013). The COACTIV model of teachers' professional competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers. Mathematics teacher education, vol. 8 (pp. 25–48). Boston, MA: Springer.
  9. Beudels, M., Schilling, Y., & Preisfeld, A. (under review). Mit Experimenten zu Wasserläufer & Co Kohärenz erleben - Potenziale eines interdisziplinären, experimentellen Kurses zur Professionalisierung angehender Sachunterrichtslehrkräfte [Experience coherence with experiments on water striders & Co - Potentials of an interdisciplinary, experimental course for professionalizing pre-service General Studies teachers]. DiMawe - Zeitschrift für Konzepte und Arbeitsmaterialien für Lehrer*innenbildung und Unterricht.
  10. Bong, M., & Skaalvik, E. M. (2003). Academic self-concept and self-efficacy: How different are they really? Educational Psychology Review, 15(1), 1–40.
  11. Bosch, K. (2006). Planning classroom management. A five-step process to creating a positive learning environment (2nd ed.). Thousand Oaks, CA: Corwin Press.
  12. Bühl, A. (2019). Einführung in die moderne Datenanalyse ab SPSS 25 [Introduction to modern data analysis from SPSS 25] (16th ed.). Hallbergmoos, Germany: Pearson.
  13. Bühner, M. (2021). Einführung in die Test- und Fragebogenkonstruktion [Introduction to test and questionnaire construction] (4th ed.). München, Germany: Pearson.
  14. Burton, S., & Nesbit, P. L. (2008). Block or traditional? An analysis of student choice of teaching format. Journal of Management & Organization, 14(1), 4–19.
  15. Buse, M. (2017). Bilinguale englische experimentelle Lehr-Lernarrangements im Fach Biologie. Konzeption, Durchführung und Evaluation der kognitiven und affektiven Wirksamkeit [Bilingual teaching in biology. Its cognitive and affective-motivational impact]. Dissertation, University of Wuppertal, Germany. Retrieved from:
  16. Buse, M., Damerau, K., & Preisfeld, A. (2018). A scientific out-of-school programme on neurobiology employing CLIL. Its impact on the cognitive acquisition and experimentation-related ability self-concepts. International Journal of Environmental & Science Education, 13(8), 647-660.
  17. Capps, D. K., Crawford, B. A., & Constas, M. A. (2012). A review of empirical literature on inquiry professional development: alignment with best practices and a critique of the findings. Journal of Science Teacher Education, 23(3), 291–318.
  18. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York, NY: Erlbaum.
  19. Damerau, K. (2012). Molekulare und Zell-Biologie im Schülerlabor [Molecular and cell biology in an out-of-school laboratory]. Dissertation, University of Wuppertal, Germany. Retrieved from:
  20. Daniel, E. L. (2000). A review of time-shortened courses across disciplines. College Student Journal, 34, 298–308.
  21. Dickhäuser, O. (2006). Fähigkeitsselbstkonzepte – Entstehung, Auswirkung, Förderung [Academic self-concepts – Formation, effect, enhancement]. Zeitschrift für Pädagogische Psychologie, 20(1/2), 5–8.
  22. Dixon, L. & O’Gorman, V. (2019). ‘Block teaching’ – exploring lecturers' perceptions of intensive modes of delivery in the context of undergraduate education. Journal of Further and Higher Education, 44(5). 583-595.
  23. Döring, N., & Bortz, J. (2016). Forschungsmethoden und Evaluation in den Sozial- und Humanwissenschaften [Research methods and evaluation in social sciences and humanities] (5th ed.). Berlin/Heidelberg, Germany: Springer.
  24. Emereole, H. U. (2009). Learners‘ and teachers‘ conceptual knowledge of science processes: The case of Botswana. International Journal of Science and Mathematics Education, 7(5), 1033–1056.
  25. Federal Statistical Office (2020). Lehrkräfte nach Schularten und Beschäftigung. Schuljahr 2019/20. Stand: 20. Oktober 2020 [Teachers by type of school and employment. The academic year 2019/20. Status as of 20. October 2020]. Retrieved from:
  26. Festner, D., Schaper, N., & Gröschner, A. (2018) Einschätzung der Unterrichtskompetenz und -qualität im Praxissemester [Assessment of teaching skills and quality in the practical semester]. In J. König, M. Rothland, N. Schaper N. (Eds.), Learning to Practice, Learning to Reflect? (pp. 163–194). Wiesbaden, Germany: Springer VS.
  27. Fleischer, T., Virtbauer, L., & Strahl., A. (2020). Experimente im NAWI-Unterricht. Kompetenzen angehender Lehrkräfte [Experiments in science lessons. Pre-service teachers‘ competencies]. In S. Habig (Ed.), Naturwissenschaftliche Kompetenzen in der Gesellschaft von morgen (pp. 848–851). Duisburg/Essen, Germany: University of Duisburg-Essen.
  28. Franken, N. (2020). Kognitive und affektiv-motivationale Kompetenzen von Lehramtsstudierenden der Fächer Biologie, Chemie und Sachunterricht im Kontext des Praxissemesters [Cognitive and affective-motivational competencies of pre-sevice biology, chemistry and science and social studies teachers in the context of the practical semester]. Dissertation, University of Wuppertal, Germany. Retrieved from:
  29. Franken, N., Damerau, K., & Preisfeld, A. (2020). „Experimentieren kann ich gut!“ – Experimentbezogene Fähigkeitsselbstkonzepte von Lehramtsstudierenden der Fächer Biologie, Chemie und Sachunterricht ["My experimental skills are excellent!" – Academic self-concepts of experimental skills of pre-service teachers with the school subjects biology, chemistry and elementary science]. Zeitschrift für die Didaktik der Biologie (ZDB) Biologie Lehren und Lernen, 24, 48–66.
  30. Fromm, S. (2012). Faktoren- und Reliabilitätsanalyse [Factor and reliability analysis]. In S. Fromm (Ed.), Datenanalyse mit SPSS für Fortgeschrittene 2: Multivariate Verfahren für Querschnittsdaten (pp. 53–82). Wiesbaden, Germany: Springer VS.
  31. George, D., & Mallery, P. (2003). SPSS for Windows Step by Step: A Simple Guide and Reference. 11.0 update (4th ed.). Boston, MA: Allyn & Bacon.
  32. Germann, P. J., & Aram, R. J. (1996). Student performances on the science processes of recording data, analyzing data, drawing conclusions, and providing evidence. Journal of Research in Science Teaching, 33(7), 773–798.<773::AID-TEA5>3.0.CO;2-K
  33. Girwidz, R. (2020). Experimentieren im Physikunterricht [Experimentation in physics lessons]. In E. Kircher, R. Girdwidz & H.E. Fischer (Eds.), Physikdidaktik Grundlagen (4th ed.) (pp. 263–291). Berlin, Germany: Springer Spektrum.
  34. Guskey, T. R. (1988). Teacher efficacy, self-concept, and attitudes toward the implementation of instructional innovation. Teaching and Teacher Education, 4(1), 63–69.
  35. Gyllenpalm, J., & Wickman, P.-O. (2011). “Experiments” and the inquiry emphasis conflation in science teacher education. Science Teacher Education, 95(5), 908–926.
  36. Haslbeck, H. (2019). Die Variablenkontrollstrategie in der Grundschule [The control-of-variables strategy in primary school]. Dissertation, Technical University of Munich, Germany. Retrieved from:
  37. Hilfert-Rüppell, D., Looß, M., Klingenberg, K., Eghtessad, A., Höner, K., Müller, R., Strahl, A., & Pietzner, V. (2013). Scientific reasoning of prospective science teachers in designing a biological experiment. Lehrerbildung auf dem Prüfstand, 6(2), 135–154.
  38. Hilkenmeier, J., & Sommer, S. (2014). Praxisnahe Fallarbeit – Block versus wöchentliches Seminar. Ein Vergleich zweier Veranstaltungsformate in der Lehrerinnen- und Lehrerbildung [Case-based learning – Block scheduling versus traditional scheduling. A comparison of two course concepts in teacher education]. Beiträge zur Lehrerinnen- und Lehrerbildung, 32(1), 88–100.
  39. Hofstein, A., Navon, O., Kipnis, M., & Mamlok-Naaman, R. (2005). Developing students' ability to ask more and better questions resulting from inquiry-type chemistry laboratories. Journal of Research in Science Teaching, 42(7), 791–806.
  40. Janssen, J., & Laatz, W. (2017). Statistische Datenanalyse mit SPSS [Statistical data analysis with SPSS] (9th ed.). Berlin, Germany: Springer Gabler.
  41. Kaiser, H. F., & Rice, J. (1974). Little Jiffy – Mark IV. Educational and Psychological Measurement, 34(1), 111–117.
  42. Kirsch, A. (2020). Qualitätsstandards für die Unterrichtsplanung im Fach Sachunterricht [Quality standards for planning in the subject of General Studies]. HLZ – Herausforderung Lehrer*innenbildung, 3(1), 406–422.
  43. Kleickmann, T., Möller, K., & Jonen, A. (2006). Die Wirksamkeit von Fortbildungen und die Bedeutung tutorieller Unterstützung [Effectiveness of trainings and importance of tutorial support]. In R. Hinz & T. Pütz (Eds.), Professionelles Handeln in der Grundschule. Entwicklungslinien und Forschungsbefunde (pp. 121–128). Hohengehren, Germany: Schneider.
  44. Kuckartz, U., Rädiker, S., Ebert, T., & Schehl, J. (2013). Statistik. Eine verständliche Einführung [Statistics. An understandable introduction] (2nd ed.). Wiesbaden, Germany: Springer VS.
  45. Kurth, C., & Wodzinski, R. (2020). Schwierigkeiten beim eigenständigen Experimentieren am Beispiel Hebel [Difficulties in autonomous experimentation using the example of levers]. In S. Habig (Ed.), Naturwissenschaftliche Kompetenzen in der Gesellschaft von morgen (pp. 262–265). Duisburg/Essen, Germany: University of Duisburg-Essen.
  46. Leiner, D. (2006). SoSci Survey (Computer Software). Retrieved from:
  47. Lüdtke, O., Köller, O., Marsh, H. W., & Trautwein, U. (2005). Teacher frame of reference and the big-fish-little-pond effect. Contemporary Educational Psychology, 30(3), 263–285.
  48. Marsh, H. W. (1992). Content specificity of relations between academic achievement and academic self-concept. Journal of Educational Psychology, 84(1), 35–42.
  49. Marsh, H. W., Byrne, B. M., & Shavelson, R. J. (1988). A multifaceted academic self-concept: Its hierarchical structure and its relation to academic achievement. Journal of Educational Psychology, 80(3), 366–380.
  50. Marsh, H. W., Salah Abduljabbar, A., Parker, P. D., Abdelfattah, F., Nagengast, B., Möller, J., & Abu-Hilal, M. M. (2015). The internal/external frame of reference model of self-concept and achievement relations: Age-cohort and cross-cultural differences. American Educational Research Journal, 52(1), 168–202.
  51. Merkens, H. (2010). Unterricht: Eine Einführung [Teaching: An introduction]. Wiesbaden, Germany: VS Verlag.
  52. Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction – what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474–496.
  53. Möller, J., & Trautwein, U. (2015). Selbstkonzept [Self-concept]. In E. Wild & J. Möller (Eds.), Pädagogische Psychologie (2nd ed.) (pp. 177–199). Heidelberg, Germany: Springer.
  54. Nadelson, L. S., Callahan, J., Pyke, P., Hay, A., Dance, M., & Pfiester, J. (2013). Teacher STEM perception and preparation: Inquiry-based STEM professional development for elementary teachers. The Journal of Educational Research, 106(2), 157-168.
  55. National Academies of Sciences, Engineering, and Medicine (2015). Science teachers’ learning. Enhancing opportunities, creating supportive contexts. Washington, D.C.: National Academies Press.
  56. Nerdel, C. (2017). Grundlagen der Naturwissenschaftsdidaktik [Basics of (natural) sciences didactics]. Berlin, Germany: Springer Spektrum.
  57. Noormann, P. (2017). Mehrstufige Eigenmarken – Eine empirische Analyse von Zielen, Erfolgsdeterminanten und Grenzen [Multilevel own brands – An empirical analysis of goals, success factors and limits]. Wiesbaden, Germany: Springer Gabler.
  58. Paulick, I., Großschedl, J., Harms, U., & Möller, J. (2016). Preservice teachers’ professional knowledge and its relation to academic self-concept. Journal of Teacher Education, 67(3), 173–182.
  59. Paulick, I., Großschedl, J., Harms, U., & Möller, J. (2017). How teachers perceive their expertise: The role of dimensional and social comparisons. Contemporary Educational Psychology, 51, 114-122.
  60. Peschel, M. (2018). SelfPro: Entwicklung von Professionsverständnissen und Selbstkonzepten angehender Lehrkräfte beim Offenen Experimentieren [SelfPro: Development of pre-service teachers‘ professional understanding and self-concepts in open experimentation]. In S. Miller et al. (Eds.), Profession und Disziplin. Jahrbuch Grundschulforschung vol. 22 (pp. 191–196). Wiesbaden, Germany: Springer VS.
  61. Porsch, R., & Wendt, H. (2016). Aus- und Fortbildung von Mathematik- und Sachunterrichtslehrkräften [Education and training of maths and science and social studies teachers]. In H. Wendt et al. (Eds.), TIMSS 2015. Mathematische und naturwissenschaftliche Kompetenzen von Grundschulkindern in Deutschland im internationalen Vergleich (pp. 189–204). Münster, Germany/New York, NY: Waxmann.
  62. Rasch, B., Friese, M., Hofmann, W., & Naumann, E. (2014a). Quantitative Methoden 1 [Quantitative methods 1] (4th ed.). Berlin/Heidelberg, Germany: Springer.
  63. Rasch, B., Friese, M., Hofmann, W., & Naumann, E. (2014b). Quantitative Methoden 2 [Quantitative methods 2] (4th ed.). Berlin/Heidelberg, Germany: Springer.
  64. Rautenstrauch, H., & Busker, M. (2020). Experimentieren im Naturwissenschafts- und Chemieunterricht [Experimentation in science and chemistry lessons]. In S. Habig (Ed.), Naturwissenschaftliche Kompetenzen in der Gesellschaft von morgen (pp. 345–348). Duisburg/Essen, Germany: University of Duisburg-Essen.
  65. Samarawickrema, G., & Cleary, K. (2021). Block mode study: Opportunities and challenges for a new generation of learners in an Australian university. Student Success, 12(1), 13–23.
  66. Schaal, S., & Randler, S. (2004). Konzeption und Evaluation eines computergestützten kooperativen Blockseminars zur Systematik der Blütenpflanzen [Development and evaluation of a computer-supported cooperative compact course in botanical systematics]. Zeitschrift für Hochschuldidaktik, 2(6), 1–18.
  67. Schreiber, N., Theyßen, H., & Schecker, H. (2009). Experimentelle Kompetenz messen?! [Evaluating experimental competencies]. Physik und Didaktik in Schule und Hochschule, 3(8), 92-101.
  68. Schreiber, N., Theyßen, H., & Dickmann, M. (2016). Wie genau beurteilen Schülerinnen und Schüler ihre eigenen experimentellen Fähigkeiten? Ein Ansatz zur praktikablen Diagnostik experimenteller Fähigkeiten im Unterrichtsalltag. [How accurate can students assess their own experimental skills? An approach to feasibly assess experimental skills in the classroom]. Physik und Didaktik in Schule und Hochschule, 1(15), 49–63.
  69. Schulz, A., Wirtz, M., & Starauschek, E. (2012). Das Experiment in den Naturwissenschaften [The experiment in (natural) sciences]. In W. Rieß, M. Wirtz, B. Barzel & A. Schulz (Eds.), Experimentieren im mathematisch-naturwissenschaftlichen Unterricht. Schüler lernen wissenschaftlich denken und arbeiten (pp. 15–38). Münster, Germany: Waxmann.
  70. Schwichow, M. G., Croker, S., Zimmerman, C., Höffler, T. N., & Härtig, H. (2016). Teaching the control-of-variables strategy: A meta-analysis. Developmental Review, 39(1), 37–63.
  71. Seidel, T., Prenzel, M., Wittwer, J., & Schwindt, K. (2007). Unterricht in den Naturwissenschaften [Science classes]. In M. Prenzel et al. (Eds.), PISA 2006. Die Ergebnisse der dritten internationalen Vergleichsstudie (pp. 147–180). Münster: Waxmann.
  72. Shavelson, R. J., Hubner, J. J., & Stanton, G. C. (1976). Self-concept: Validation of construct interpretations. Review of Educational Research, 46(3), 407–441.
  73. Sorge, S., Keller, M. M., Neumann, K., & Möller, J. (2019). Investigating the relationship between pre-service physics teachers' professional knowledge, self-concept, and interest. Journal of Research in Science Teaching, 56(7), 937–955.
  74. Standing Conference of the Ministers of Education and Cultural Affairs (KMK) (2004). Standards für die Lehrerbildung: Bildungswissenschaften [Teacher education standards: Educational sciences]. Retrieved from:
  75. Standing Conference of the Ministers of Education and Cultural Affairs (KMK) (2008/2019). Ländergemeinsame inhaltliche Anforderungen für die Fachwissenschaften und Fachdidaktiken in der Lehrerbildung [Common standards for specialist science and subject didactics in teacher education]. Retrieved from:
  76. Tänzer, S. (2010). Bedingungen und Voraussetzungen in der Lehrperson [Conditions and requirements in a teacher]. In S. Tänzer & R. Lauterbach (Eds.), Sachunterricht begründet planen (pp. 64–76). Bad Heilbrunn, Germany: Klinkhardt.
  77. Tesch, M., & Duit, R. (2004). Experimentieren im Physikunterricht – Ergebnisse einer Videostudie [Experimentation in physics lessons – Results of a video study]. Zeitschrift für Didaktik der Naturwissenschaften, 10, 51–69.
  78. Tolsdorf, Y., & Markic, S. (2018). Development and changes in student teachers’ knowledge concerning diagnostic in chemistry teaching – A longitudinal case study. EURASIA Journal of Mathematics, Science and Technology Education, 14(12), em1613.
  79. Wahl, D. (2013). Lernumgebungen erfolgreich gestalten. Vom trägen Wissen zum kompetenten Handeln [Successfully designing learning environments. From dull knowledge to competent action] (3rd ed.). Bad Heilbrunn, Germany: Klinkhardt.
  80. Wigfield, A., & Eccles, J. S. (1992). The development of achievement task values: A theoretical analysis. Developmental Review, 12(3), 265–310.
  81. Wolff, F., Helm, F., Zimmermann, F., Nagy, G., & Möller, J. (2018). On the effects of social, temporal, and dimensional comparisons on academic self-concept. Journal of Educational Psychology, 110(7), 1005–1025.
  82. Yeung, A. S., Craven, R. G., & Kaur, G. (2014). Teachers’ self-concept and valuing of learning: Relations with teaching approaches and beliefs about students. Asia-Pacific Journal of Teacher Education, 42(3), 305–320.
  83. Yip, D. Y. (2001). Assessing and developing the concept of assumptions in science teachers. Journal of Science Education and Technology, 10(2), 173-179.


Creative Commons License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.